FAGILITY FORM 602

[

. ENGINEERING EXPERIMENT STATION

cesT) PRICES

DEPARTMENT OF MECHANICAL

AND INDUSTRIAL ENGINEERING
ME-TN-242-2

UNPUBLISID FRELLIHERY DRTA

SOME INFLUENCES
OF MACROSCOPIC CONSTRICTIONS
ON THE THERMAL CONTACT RESISTANCE

11
apo PR — A. M. CLAUSING
s

ard coPY e
N\'\crof‘c“e WF

053 Juv ©°

Research Sponsored by
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

under Grant NsG-242-62

5—9-5—Wﬁ"—’
'—‘rcc—ggg&‘baén’»_z' |

a3

(CODE)

e o=

(CATEGORY)
INASA CR OR TMX OR AD NUMBER)

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
APRIL, 1965




ME TECHNICAL REPORT 242-2 April, 1965

SOME INFLUENCES OF MACROSCOPIC CONSTRICTIONS

ON THE THERMAL CONTACT RESISTANCE

by

A. M. Clausing

RESEARCH GRANT NO.

NASA NsG-2k2-62

Department of Mechanical and Industrial Engineering
Engineering Experiment Station
University of Illinois
Urbane, Illinois




ii

Acknowledgment

This research was sponsored by the National Aeronautics and
SpacerAdministration under Grant NsG-242-62. The author hereby

records his sincere appreciation for this financial support.

The author would also like to express his thanks to
Messrs. Rott, McNary, and Cheema, who helped in taking the experi-
mental data and in other phases of this research. The numerical
calculations were performed on the IBM-T7094 digital computer in

the Department of Computer Science at the University of Illinois.




iii
Foreword

The research was carried out under Research Grant No. NsG-242-62,
"Theoretical and Experimental Study of Thermal Contact Resistance
in a Vacuum Environment."

It was established in the previous technical note (ME-TN-2L42-1)
that macroscopic effects often dominate the thermal contact resistance
in a vacuum environment. A restrictive analysis based on a nevw model
was proposed for the prediction of the thermsl contact resistance,
and extensive results were given which supported the conceptual
correctness of the model.

The present technical note gives several extensions of this study.
Section 1.0 gives a numerical solution for the constriction resistance
which removes the error present in the approximate analytical solution
previously employed. In addition, the solution obtained is also valid
for thin regions. Previously, the constriction resistance for thin
plates could not be predicted even when the contact geometry was
defined.

Section 2.0 applies the model in the anelysis of contacts between
dissimilar metals. It was found that the model is applicable to
contacts between dissimilar metals if the influences of thermal strain
are small. On the other hand, if thermal strain is of importance; the
model is capable of qualitative prediction of the resulting directional

effect.
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Nomenclature

radius of a contact area

radius of constriction region

equivalent flatness deviation (see Fig. 1.1)
modulus of elasticity

defined by Equation 1.19
interface conductance;, h = Kiﬁ
thermal conductivity

lengtn of specimen

equivalent length of contact resistance
load

contact pressure

heat flux

rate of heat flow

resistance

dimensionless resistance (see Eq. 1.17)
temperature

a temperature difference

constriction ratio, x = a/b

axial coordinate

coefficient of linear expansion

grid spacing, & = Ar = Az

elastic conformity modulus

relaxation parameter




Subscrigts

1

e

surface or specimen 1

surface or specimen 2

apparent contact area

constriction

macroscopic constrictions or contact regions
a mean value as defined in text

microscopic constrictions or comtact areas

total




1.0 The Influences of the Region Geometry on the Macroscopic Constriction

Resistance —

Figure 1.1 represents the model of the contact surface which was employed
in the analysis of thermal contact resistance in Reference 1. It was found in
this referéence that the thermal contact resistance was dominated by the macro-
scopic constriction resistance. Thus, later analysis has emphasized the study
of this resistance.

The determination of the additional temperature drop due to the presence of
a constriction consists of two parts: a) Givenrthe load, what is the macroscopic
contact area? and b) Given the macroscopic contact area, what is the constriction
resistance? Once the constriction resistance is known, the additional tempera-
ture drop due to the presence of the interface can be easily calculated. The
discussion and analysis which follows pertains to the second problem; i.e.,
finding the constriction resistance when the macroscopic contact area is known.

For the model proposed in [l]*, the macroscopic contact area was assumed to
consist of a single circular contact area of radius ar whose center coincides
with that of the apparent contact area. Thus, the non-contact region is an
annulus whose inside and outside radii are a and bL, respectively. Since the
geometry, as defined, is symmetrical with respect to the contact plane, the
cylindrical region represented by one of the specimens can be considered. It is
shown in Figure 1.2 (page 3). Assuming that a perfect contact exists over the
region of radius aL, the following partial differential equation and boundary
conditions describe the temperature field:

2, .
gfr, 1ot o1

= 0 (1.1)
dr2 T or 322

* .
Numbers in brackets, [..], indicate references listed in Appendix B.



o

Microscopic
Contact Areas

Contact Region

Contact Non-Contact

Plane

L

L
dz
-————————-QbL
Contact Plane at
Ty Finite Load, P
i
Non-Contac* Region
]
Specimens at Zero Load Contact Plane at
(xL=o) P=0

Fig. 1.1 Model of Contact Surface




T(r,o0) = T
0<r< (1.1a)
)z
oT
- (ryo) = 0,
oz
a <r <bg (1.1b)
i
| r
gr_ (bL}Z) = 0,
— Pp, — 0 <z <L (1elc)
L o(r,L) = T,
0<r<b (1.14)
) ) 1 - This problem is a very formidable
| B R ¥ one due to the mixed boundary condi-
T=1T
(r,z) tion at z = O. The boundary is
FIGURE 1.2 isothermal for 0 £ r < a s whereas
FINITE CYLINDRICAL REGION there is zero heat flux over the

remainder of the boundary, i.e., for
& <r< bLo The difficulty due to this mixed boundary condition was circum-
vented by Roess [8], who found that a flux distribution across the area 0 < r < a
which was proportional to (1 - rz/aLz)-l/2 resulted in an approximately iso-
thermal area unless the constriction ratio X, (= aL/bL) was near unity. In
addition, Roess assumed L/bL was sufficiently large that the constriction
resistance was independent of L/bL (see Figure 1.2). With these additional

assumptions he found the constriction resistance was:

g(x;)

R(XL) = E—EZE (1.2)
where
g(x;) = 1 -1.k0925 x + 0,29591 xL5 + 0.0525h4 st + 0.02105 xL7

+ 0,01107 xL9 +oeeee (1.3)




and k is the thermal conductivity. This solution was employed in the analysis
given in [1]. The experimental data were then compared with the resulting
theoretical prediction.

Further analysis of this was deemed highly desirable since:

(1) Roess' solution failed if L/bL < 1. This region is probably
the most important one, especially in the study of thermal contact
resistance problems connected with space vehicles where thin plates
are often employed. Under such circumstances, small values of L/bL
would be present and the theoretical prediction of [1] would no
longer be applicable,

(ii) The theoretical solution of [1] which employed Roess' solution
predicted smaller velues of the constriction resistance than the
experimental values if X; was near unity. Part of this discrepancy
could be due to the failure of Roess' solution to apply, since his

assumed flux distribution is in error if x, is near unity.

L

l.1 Solution Procedure

Analytically, little success bhas been achieved in solving problems with
mixed boundary conditions such as the one given. This fact combined with the
limited success which Roess obtained indicated that a numerical approach would
probably be most rewarding. The only anticipated difficulty which the mixed
boundary condition should cause in a numerical solution is relatively large
spatial truncation errors in the region near the point of intersection of the
isothermal boundary and the zero flux boundary, z = 0, r = ay . One can see that
the derivatives will be large near this point; thus, large spatial truncation
errors will result. If a sufficiently fine network were employed in order to
reduce these errors to acceptable proportions, it was initially thought that the

computation time might be excessive. However, it was possible to circumvent



this problem.

l.1.1 The Difference Equations Employed
If one takes advantage of the symmetry of the region, a possible

nodal network is that given in Figure 1.3, In the finite difference representa-

tion of (1l.l), Ar was chosen equal to Az. A
The subscripts "i" and "j" refer to the (n,1) ?,m)
g ]
z and r directions respectively. Each ;
/]
increases with an increase in the corres- /] f
A
A
ponding independent varisable. Ar g
A
Az <
A finite difference representation /] i+1,J
i.3=1 |s = 4
of Equation (1.1) is: 1,3 1o d
P “
Z i,j+1 ;
AT i-1,] L
Tig,y * Taaa,y * O a) Ty g ’
J /] "
/
AT /
+ (- 2rj) Ty 51 T ) , g -
(1,1) é{ 7777 (1 m) r
= O (lol{’)
FIGURE 1.3
where rJ is the radius corresponding to the
J=th columm and Ar = Az = rj+l - rj. The thermal conductivity has been assumed

to be constant. However, by an appropriate change in the dependent variable,
the case of a linear variation of the conductivity with temperature could have
been treated with negligible additional computation time and no further compli-
cation. FEquation (1.4) is valid for all nodal points except those lying on the
boundaries of the region. "n" stands for the number of rows and "m" stands for
the number of columns. Since Ar was chosen equal to Az, the ratio of the length

L to the radius bL is given by:




For the nodal points on the r = O boundary, the simple equation
T, , = T, (1.5)

was employed. The error introduced by this approximation was always negligible.
If this error is of importance, it can be easily detected by the failure of the
solution to satisfy a heat balance. At the right insulated boundary the differ-

ence equation becomes:

r AI‘
T, T +2(1 - E%;) T - (L - -1;;) Ty = O (1.6)

-1,m b ti+l,m i,m-1

Likewise, a difference equation for nodal points on the lower insulated boundary
is:

T L4 = 0 (1.7)

Ar Ar
oT, . + (1 + 2rJ) T 1 ) 1,35-1 2,3

+ - —_—
2,J 1,3+ ( ery

Finally, a difference equation for the nodal point at the insulated right hand
lower corner is:

Ar
)
m

- (4 - T = 0 (1.8)

Ar
o — — f
2T + 2(1 5r ) T 1,

2,m 1,m-1

Thus, all the necessary difference equations are known since the remainder of
the boundary is at some known temperature. Note that the point r = ar, z =0
has been conveniently placed midway between two nodal points.

The total number of unknowns is [(n-1) m - ma], where m is the number of
nodal points on the lower isothermal boundary. The resulting simultaneous

algebraic equations are of the form:

an Xl + 8.12 X2 + s00 + aln Xn = Cl
8.21 Xl + 6.22 X2 + 00 + a-2n Xn = 02

(1.9)
B.nl Xl + B.n2 X2 + co0 + alm Xn = Cn




Equations (1.9) can be rewritten as:

1
X, = ET_'(cl -8, X, - 8% x5 S e - B xn)
11
x, = - (e, a8, X. = 8.2 X, = eoe =8, X )
2 a22 2 21 71 23 73 2n
(1.10)
x = 2 (¢ -a.x -8 x - - a xX_ )
n a 'n nl “1 n2 2 °°° n,n-1 “n-1

In this form the equations are amenable to an iterative process. If the x's

are calculated in their natural order, the procedure is called the Gauss Seidel

iteration. When applied to elliptic difference equations, the procedure is also

known as the method of successive displacements or the Liebmann Method. For the

set of difference equations which we obtained, convergence of the Gauss Seidel

iteration is guaranteed since a sufficient condition for convergence is [2]:

a..l > la. I + oeeo + Ia. i ' + |a.
l iil - 171,1 i,i-1 i,i+1

| + oo + Iainl
for all i, and for at least one i:
[aiil > Iai,ll Foeee ¥ lai,i-l‘ M ‘ai,i+l| toeee lain|

These conditions are satisfied by the difference equations given.

l.1.2 Methods Used to Decrease the Computation Time

If Equations (1.10) are rewritten as:

T - L - - - -
x,' = xl(l w) + 5 (cl B1p Xy = Byzx Xy = eeo -8y xn)
w
H — - ——— - - - ®eo0e0 =
X' = x2(1. w) + a (CE 851 X) ~ 8y3 X3 &y xn)

(1.11)

©
xn(l - @) + E;; (cn -a, X -8, X,

»
i

o6 - an,n-lxn—l)

where O < w < 2, we have the extrapolated Liebmann method. "&" is called the




relaxation parameter. If w = 1, Equations (1.11l) reduce to (1.10) and the

iterative scheme becomes the Gauss Seidel iteration. The employment of w > 1 is
similar to "overrelaxation" and w < 1, "underrelaxation" in solving problems by
the relaxation technique. If w = 1, the residue at a nodal point is reduced to
zero when a nevw value of the dependent variable is calculated at this point.
If @ were 2, the magnitude of the residue would not be affected; only its sign
would change.

The extrapolated Liebmann method as described was employed in obtaining
the solution to the resulting set of difference equations. This iterative scheme
was considerably faster than the ordinary Gauss Seidel iteration. In addition,
several other techniques were employed in order to decrease the computation time
and spatial truncation error. These techniques follow.

It is well known that the number of iterations required to converge to the
solution of a set of simultaneous equations (assuming the scheme is convergent)

is highly dependent on the initial guess. The time required for one iteration

also increases greatly as the number of eguations is increased. For these reasons,

a solution was first obtained with a relatively crude subdivision. Ar and Az
were then decreased by a factor of three which resulted in approximately nine
times as many simultaneous equations as contained in the initial network. The
temperatures at the new additional nodal points were determined by linear inter-
polation. Thus, although the number of simultaneous equations solved was often
greater than 2700, tkhe total number of iterations required was usually less
than 300. An extremely useful by-product of this procedure was that the spatial
truncation error could be rationally estimated since the unknowns were evaluated
for several different nodal spacings. The nodal spacing was changed by factors
of three instead of two as a consequence of the point r = aL, z = 0 (see Figure
1.3).

It is known that the derivatives are large in the region of z = 0, r = a; -




If a uniform network is employed, the number of equations required in order to
reduce the spatial truncation error in this region to a negligible amount is
very large. Since such a large number of equations would require considerable
computation time, & nonuniform network was employed. A finer nodal spacing was
employed only for a small annular region centrally located with respect to the
point 2z = 0, r = a . The values of Ar and Az for the fine network were 1/3 of
the values employed in the coarse network.

One of the major reasons for this effort was to determine the dependence of
the constriction resistance, Rc’ on the length of the region L. It is known
that as L/bL becomes large, R, is independent of L/bL and OT/dz becomes a constant.
This latter fact was employed in order to speed the computation process. A
solution was obtained for the smallest value of L desired, which will be called
L

The length of the region was then increased to L, and the previous results

1° 2

were used as an initial guess for z < L,. For L, <z <L, a value of 9T/ oz,

1° 2
which was based on the total rate of heat flow, Q, was determined and the
initial guess for the region was then obtained by assuming that this gradient
was a constant. The new boundary temperature at z = L2 is given by:
L, - 1L,)

TL(new) = TL(old) _._TEE?TE%%- (1.12)
The length L was incremented until Q became approximately constant; i.e., until
Rc became independent of L. The constriction resistance could be determined as
a function of L by this procedure with a considerable savings in camputer time.
When the initial approximation is poor; the number of equations is small. As L
(and bhence the number of equations) approaches infinity, the error in the initial
approximation approaches zero. It was fouund that Rc could be determined for a
series of values of L by employing this procedure in approximately the same

computation time as that required if RC were calculated for only the largest

value of L in the series.
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1.2 Results of Numerical Computations

Since it is difficult for the reader to assess the accuracy of the resgults
of a numerical calculation if a basis for the reported accuracy is not given, =
discussion of the accuracy of the numerical results will first be given.

Two important sources of error can arise: spatial truncation error and
error caused by obtaining the solution to a set of simultanecus equations by an
iterative scheme, an infinite mathematical process, in a finite number of opera-
tions. Round-off error did not cause any problems for the iterative procedure
employed., As aL approaches zero the difference equations become ill-conditioned
as can be seen from physical arguments. However, the degree of ill-conditionness
was never sufficient for the range of X employed to cause computational
difficulty. (The computational time did increase as X became small.)

The errof caused by truncating the iterative procedure after a finite number
of iterations was assessed from an energy balance., Neglecting the effect of
the approximation employed at the centerline of the region, the heat flowing into
the region will equal the heat flowing out of the regicn, in general, only if
the iterative procedure has converged to the solution of the finite difference
equations. An energy balance was therefore employed as a convergence check.

This check is excellent since the constriction resistance is calcuwlated directly
from the heat flow rate. The error in the total resistance is the same as the

error in Q. The total resistance is given by:

TL - IO .
Rt = Q (loli)
and the constriction resistance is given by:
R, = R - L (1.14)
- 2
k,n'bL
The rate of heat flow Q was determined frocm the average of (QZ_O+ QZ_L)/Q°




1l

When the heat flowing through the boundary at z = O was within 1%, 0.5%, and
0.25% of the heat flowing out of the boundary at z = L, the unknowns were printed.
These results showed that the average of these two heat flow rates was always
considerably more accurate than the percentage difference between them. Thus, it
is estimated that the error in Rt caused by truncating the iterative process was
always less than 0.05%. {(In some cases, Q,_, vas within 1077 per cent of the

heat flow rate, Q before the convergence test was made.) It follows from

z=L’
(1.14) that the error in R, is largest when R, is small compared with R.. This
maximum error which occurred for Xg, = 0.833 was only 1%. This errcr is 0.003%
fOI‘ X, = 0050

E)

It can easily be shown that the spatial truncation error is of the order
of the square of the nodal spacing which is Ar = Az = 6. If the fourth
derivatives are relatively constant, one can assume that the spatial trunca-

tion error is proportional to 52, Thus, the true constriction resistance

becomes

Rc = Rclg + C 612 (1015)

where R ' | . . . . A . . .
cl is the numerical value obtained with a nodal spacing of 61“ Since

two different interval sizes were used in the calculation scheme employed, it

is alsc kuown that:

Thus, tne true value is given by:

R.'-R°
R = R.® --%% c2 (1.16)

c cl P 2
l - 5‘6‘1/62)

Calculations using a multiple of nodal spacings indicated trat (1.16) not only
provided a good indication of the magnitude of the spatial truncation error but

also a means of removing part of this error. Thus, small corrections were




applied to the numerical results using Equation (1.16). This correction never
exceeded 0.6%, The results indicated that the spatial truncation error is
probably less than 1% although for some of the limiting cases this error may
be slightly larger.

A dimensionless constriction resistance Rc* will be defined as:

kR 7b2
[¢]

R% - L _ k

c bL h bL

(1.17)

e B

where AL may be interpreted as the additional length of the region required to
produce the same resistance ag the constriction. This is the same dimensionless
resistance as was employed in the dimensionless plots of [1]. The subscript "c"
is employed only to differentiate the constriction resistance from the total
resistance. Since 1t is the only resistance being considered in many discussions,
the subscript is often dropped.

The results obtained from the numerical solution are given in Table 1.1,
These values are the dimensionless constriction resistance as defined by (1.17)
and are the constriction resistance of one region only. For two cylindrical
regions of the same length and radius in contact over a circular, concentric area
of radius 81 the total constriction resistance or the so-called contact resistance
is twice the value given in Table 1.1.

Table 1.2 shows the variation of the ratio Rc*(L/bL)/RC*(L/bL=°) with x
and L/bLo The variation of the constriction resistance with Lbe is cleariy
shown in these tables. These data show that the macroscopic constriction resist-
ance is large even for relatively thin plates. For example, consider a disk 0.2"
thick and 2" in diameter with a constriction ratio of 0.5. Its constriction
resistance is still 71% of the value for L=w=, If its thickness were 0.067",

this value would be reduced to 32%. Thus, it is seen that macroscopic effects

also will be dominant for thin plates, provided these effects are dominant for

thick regions. The dominance for thick regions was shown in [1].
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Rcf =AL/bL
X JA67  .233 L300 367 .h33 .500 o567 o633 .T00  .767 833
Loy I
0.0 0 0 0 0 0 0 0 0 0 0 o
L0667 [[1.689 0,906 .552 360 247 173 122 0856 .0589 .03%89 .0231
Q333 12,542 1,446 911 6080 L4216 2970 .210 1460 .0990 .0630 .0352
.200 | 3.000 1.772 1.145 7760 .5425 .383%0 .270 .1861 .1240 .0765 .0LO7
267 [13.257 1,972 1.299 .8878 .6237 L4410 .3090 .2115 .1387 .083%6 .0Lzk
b 3.49L 2,169 1.452 1.006 L.7105 L5014 3495 2360 L1522 L0897 .OLS2
.6 3,597 2.258 1.526 1.063 .7523 .5306 .3680 .2470 L1575 .0919 .0L59
B8 2,618 2.277 1.542 1,077 .7615 .5368 .3720 .2k93% 1584 .0923 .CLS9
1.0 wee 2,281 1.5k 1,080 .763%6 .5380 .3728 .2498 .1585 0924 .OLAO
1.2 - ——- ——— ——— 76k ——— 3729 --- - ——— -
® JL3°625 2,283 1.545 1.080 .764 o539 .373  .250  .159  .092k ,0L6C
Table 1.1 The Dimensionless Constriction Resistance Rc*
as a Function of X, and L/bL i
R,(L/b )/R,(L/b;= =)
167 233 L300 .367  J43Z3 0 500 W567  .633  .700 L7657  .83%3
0 0 0 0 0 0 0 o 0 0 0
L0667 J 466 397 o357 .333  .32h 321 .327  L342 370 Wh21 0 502
;1323 I .703 632 .590 o563  .553 552  .56L .58k 623 682 765
2200 | 828  .777  .7HL .7T19 L711 711 WJ72h J7hS L7800 828 L&85
267 .889 .86k 841 812 .816 .819 .829 .B46 .8BT2  .905  .9Lk
ok 2965  .950 940  .931  .931 .932 .9%6 945  ,959 .971 .98k
.6 993  .989 .988 .985 .986 .986 .986 .989 .991  .995 .998
.8 2998 .995  .999 .996 .998 .998 .999 .997 998 .999  .9uB

Table 1.2 The Ratio RC(L/bL)/Rc(L/bL = o)
as a Function of x; and L/bL
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It must be remembered that the boundary conditions for an actual contact
between thin regions could be different than those given by (l.la) to (1.1d).
These results could not be directly applied for such cases but could be employed
in a qualitative study. The definition of resistance as normally employed would
probably no longer be applicable for other types of boundary conditions. Thus, a
new, meaningful description of the effects of imperfect thermal contact at inter-
faces would have to be developed.

Figure l.4 gives a comparison between the present results and Roess’
sclution. This comparison clearly shows the error in Roess' approximate solution
which was caused by the failure of his assumed flux distribution to adequately
approximate the isothermal boundary condition for large values of Xp . If X, is
small, the agreement between the two solutions is excellent. This was expected
since Roess' solution is known to agree with the exact solution whick is avail-
able for the limiting case of X = 0.

The data of Table 1.1 for the case of L/bL > 0.8 was fitted with a fifth
degree least squares polynomial. The resulting equation is:

L/by > 0.8

5 (1.18)
.16 < x < .84

lOf(xL)

>0
*
=

f(xL) = [1.%983865 - T.4469788 x ¥ 19.930288 xL2 - 38,589651 xL'3
+ 38.655295 xL4 - 16.624690 xLS} (1.19)

The disagreement between the numerical values and Egquation (1.18) was always
less than one per cent. The dimensionless contact resistance for two similar
regions in contact is:

L/b. < .8
RY = 2(1of(xL) /oy

)s
A6 < X < .8k

Extensions of the numerical procedure given in this section to obtain



50 T ‘r T T T

L/b; > 1.0

N
(@}

)(100)

(&)

Byumerical ~ RRoess
.~ RNumerical

(

10

Fig. 1.4 Comparison between Roess' Approximate Solution

and the Numerical Solution

1.0
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solutions to variations of the problem described by Equations (1l.l) can easily
be made and are being considered. Extensions to the study of the éffects of
thermal constrictions in transient heat conduction can also be easily made. One
such problem which is designed to demonstrate possible consequences of imperfect

thermal contacts in transient heat conduction is under consideration.




17

2.0 Heat Transfer at the Interface of Dissimilar Metals--The Influences of

Thermal Strain

The dependence of the thermal contact resistance on the direction of heat
flow at an interface between dissimilar metals was first reported by Barzelay,
et al. [3]. They found that in some instances the interface conductance for
heat flow from aluminum to steel was over five times higher than when the heat
flowed in the otber direction. Motivated by Barzelay's results, Rogers [4] per-
formed a more detailed experimental study of dissimilar metallic interfaces.

His results showed that the interface conductance for an interface in air was
approximately 20 per cent higher when heat flowed from aluminum to steel than when
it flowed in the other direction. The numerical difference between the values of
interface conductance for an interface in vacuum remained approximately the same,
but the percentage difference rose to 100%. Rogers found little or no directional
effect for chromel-alumel and copper-steel interfaces. He suggested that the
effect could be associated with the mechanism of conduction at the "points" of
metallic contact. Williams [5] attributed this phenomenon to surface contamination,
and Moon and Keeler [6] applied the theory of heat conduction in the solid state
to explain this asymmetric behavior. Powell, et al. [7], did not find any
directional effect for an aluminum-steel interface or for several other inter-
faces formed by dissimilar metals which they recently tested. Their measurements
vere made with a thermal comparator.

It is thus seen that the directional effect is a confusing phenomenon.
Barzelay attributed it to warping, whereas Rogers claimed that his results made
Barzelay's explanation unacceptable. Others are studying the physics of heat
conduction across the "actual" contact areas. At the same time, some data has
shown no directional effect. It is not possible to explain or account for the
bresence of a directional effect with the microscopic models presented in the

literature (see [1] for a discussion of these models). Let us now consider this
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prcblem employing the macroscopic model given in [1].

The formation of the microscopic contact areas is usually attributed to
plastic deformation betweern contacting asperities. This means that the thermal
stresses caused by microscopic constrictlons% are probably small in compariscn to
the mechanical stresses which were required to cause this plastic deformaticn;
consequently, the influence of these temperature gradients on the microscopic
contact areas is smell. On the other hand, the mechanical stresses and accompany-
ing strains which cause the formation of the macroscopic contact areas are
usually small, since thermal contact resistance is a major problem only if thke
loads between the contacting surfaces are small, and since the flatness deviations
of realistic surfaces are not large. It would thus appear that in some instances
thermal strain would influence the size of the macroscopic contact area and
consequently the macroscopic constriction resistance,

It can be seen from the results presented in [1] that relative strains of
only a few microinches in a direction perpendicular o the plane of the interface
could appreciably influence the macroscopic contact area. The reader can eagily
verify, by considering the simple problem of the linear expansion of a rod, that
thermal strains of this magnitude could have been present in many of the specimens
employed in obtaining the data reported in the literature. It can also be easily
shown that strains parallel to the plane of the interface cause a negligible change
in the macrosccpic constriction.

If it is assumed that one end of the two <contacting members is unrestrained,
i.e., that the load exerted between the contacting members is constant and not

affected by the longitudinal expansion or contraction of the ccntacting members,

This discussion excludes the thermal straing due to a change in the temperature
level of the regions. These strains would cause a relative moticn between the
contacting surfaces which would cause a change in the microscopic contact areas.
However, these changes would occur in all Jjoints, and although they add consider-
able complication to a microscopic deformation model, they cannot account for a
directional effect.
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thermal strain affects the macroscopic constriction resistance only when tempera-
ture gradients parallel to the plane of contact are present. Such gradients will
result if: (i) macroscopic constrictions to the heat flow across the interface
are present, or (ii) the thermal boundary conditions caused by the environment
permit heat flow parallel to the plane of contact. These two sources of strain

will be considered separately.

2.1 Thermal Strain Resulting from Macroscopic Constrictions

Consider the physical model of the contacting members employed in [1]; i.e.;

two cylindrical isotropic regions of length L and identical radius b The flat-

L°
ness deviation of the contacting surfaces is simulated by spherical caps of radii
rl and r2° It will be further assumed momentarily that the coefficient of linear
expansion of the lower member is zero.

It can be seen from Figure 2.1 that if heat is flowing from the upper member
to the lower member, the portion of the upper member near the macroscopic contact
area is cold relative to the rest of the member. Thus, this region contracts,
which causes the formation of a larger macroscopic contact area than that which
is predicted if only the mechanical stresses are considered {see Fig, 2.1). If
the direction of heat flow is reversed, the portion of the upper member near the
macrcscopic contact is hot relative to the remainder of the member. In this case,
the thermal strain causes a smaller macroscopic contact area than that which is
predicted from the mechanical stresses. Thus, it is seen that if the heat is
flowing from the upper to the lower member, the thermal strain causes a decrease
in the macroscopic constriction resistance, whereas if it is flowing in the other

direction, the thermal strain causes an increase in the macroscopic constricticn

resigstance. The thermal contact resistance thus becomes a function of the

direction of heat flow.

The gecmetry of the contacting members will obviously influence the size of
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Figure 2.1- Effect of Thermal Strain Resulting from a Macroscopic

Constriction

the macroscopic contact area and the manner in which the size of this ar=a varies
with the mechanical load. However, the frend of the directional effect i1s seen
to be independent of the gecmetry of the contacting surfaczs. For example,
congider the case when the heat is flowing from the upper specimen to the lower
specimen., The regions near the macroscopic contact area in the upper specimen
will be cold relative to the surrounding region of the specimen. The thermal

strain for this case will cause the macroscopic contact area to grow whether the
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upper contacting surface is concave or convex. (The lower surface could also be
either concave or convex.)

The amount of thermal strain which occurs is a function of the ceoefficient
of linear expansion a, the modulus of elasticity E; Poisson’s ratic v, and the
magnitude of the temperature gradients. Thus the influence of thermal strain is
dependent on the heat flux and the thermal conductivity of the materisl. If the
heat flux is small and the thermal conductivity is large, the influences of thermal
strain vanish.,

Ncw, consider a contact formed between twe identical materials wkere both the
upper and lower rsgions bave the same coefficient of linear expansion. If the
material properties are independent of temperature, the thermal strains perpen-
dicular to the interface which occur in the regions as a consequence of macro-
scopic constrictions are complementary; thus the macroscopic contact area is
approximately the same as that present in the absence of thermal strain. Since
the variation of the material prcperties with temperature is nct large, the
neglect of the effect of thermal strain due to macroscopic comstricticns skouwid
nct cause much discrepancy between the theoretical predictions of [1] ard :the
experimental resuits for contacts between Zdentical materials. Dependency of
material properties on temperature will not cause a directional effsct in contacts
between identical materials as long as the specimen’s geometries and the imposed
boundary conditions are identical.,

When dissimilar metals are in contact, a directional effect 1g frequentiy
detectable. For a combination such as stainless steel-aluminum, the directional
effect 1s often pronounced due mainly to the large difference in ths magn:tude
of the thermal conductivities. (The tkermal con&uctivity of the aruminum speci-
mens tested was approximately an order of magnitude greater than that of the
stainless steel specimens.) At present a theoretical prediction of the influence

of each parameter is not possible. A discussion of the role played by each



n
n

variable will be delayed until the problem is understood more completely.

2.2 Thermal Strain Due to the Thermal Environment

The importance of small temperature gradients parallel to the plane cf the
interface has not been realized probably because the importance of slight macro-
scopic nonconformities of the mating surfaces was previously not realized.
However, gradients as small as 1°F in a direction parallel to the plane of the
interface may be of importance. These gradients cou'd arise, fcr example, from
small amounts of radiant heat exchange with the enviromment or from thermal
shunting. (Thermal shunting would occur if an alignment device or an insulating
material were in contact with the specimens.) Gradients in a direction parallel
to the plane of the interface would be most likely to occur in poor conductors;
e.g., stainless steel, since a small heat flux causes a much larger gradient in
a poor conductor. Figure 2.2 gives an exaggerated representation of the effect
of a small radial gradient on a previously flat surface for the cylindrical
geometry empioyed in [1]. It is seen that in this case the thermal strain may be

beneficial or detrimental depending on the original geometry of the contacting

‘_f_/__f_ ..._:::>
- — ———— no radial heat ficw
a#0 ‘ . ,
-— ? — — — — — effect of thermal strain
k - small due to radial heat flow
Q Q on specimen gecmetiry
- —_—
-——— | —_—
<t'—""‘*‘——:;7

Figure 2.2 Effect of Thermal Strain Due to Thermal Environment




surfaces and on the sign of the radial heat flux. For tpe geometry emplcyed in [1],
the effect was always detrimental since the specimens were losing heat by radiaticn
to the chamber walls in all cases.,

This source of thermal strain could also give rise to a directional effect
in contacts between dissimilar metals. For example, for a stainless steel-
aluminum interface, the heat fiow in the stainless specimen would cause the
largest gradients; thus geometry changes due to thermal strain in this specimen
would have the greatest influence on the macroscopic contact area. Since the
temperature level of the stainless steel specimen and therefore the amcunt of
heat it exchanges with its environment would normally vary considerably withk the
direction of heat flow, a directional effect would result. The influence of

these gradients is presently being studied in greater detail.

*
2.5 Experimental Results

Figure 2.3 gives a comparison of the experimental results of a stainless
steel-aluminum interface which was studied. This interface had a total equivalient
flatness deviation of 180 pin., and the specimens had surface roughnesses of
approximately 4 uin. The dimensionless cocrdinates suggested in [1] are being
employed. Em and km are now the harmonic means based on the values for aluminum
and stainless steel. The theory curve which is given in Figure Z.3 does not
include the effects of thermal strain. Thus, when the heat flocwed from the
stainless steel to the aluminum, the resistance was lower than the predicted
values due to the enlargement of the macroscopic contact area by thermal strain
as discussed in Section 2.1. When the heat ficwed from tke aluminum to thke stain-
less steel, the thermal contact resistance was greater than the theoretical pre-

dictions. These results indicate that the thermal strain due tc the macroscopiz

A description of the test surfaces and a tabulation of the experimental
results is given in Appendix A.
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constriction was dominant. This was expected since the specimen surfaces were
highly polished and the heat loss by radiation was small,

The data given in Figure 2.3 were taken with a constant temperature drop
across the test column; thus, when the resistance of the interface changed, the
heat flux was changed. Of course, the contact resistance is highly dependent on
the heat flux for this combination of dissimilar metals and it must be considered
in using these data.

It is seen that a single conductance or resistance versus pressure curve is
no longer sufficient to describe a given interface between dissimilar metals even
in the absence of hysteresis-like variations. If the heat flcw rate is employed
as a parameter, a family of curves would result. If the thermal strain is due
only to the macroscopic constriction and if microscopic effects are unimportant,
the theoretical curve given in Figure 2.3 would represent the limiting case of
Zero heat flux.

Figures 2.4, 2.5, and 2.6 show the variation of the contact resistance with
heat flux for this stainless steel-aluminum interface for several different
apparent contact pressures. During a given series of tests, the contact pressure
was held constant while the heat flov rate was varied from some maximum value to
a value near zero. The direction of heat flow was then reversed and the heat flow
rate was again increased. The rate of heat flow was changed by changing the source
temperature.

It is seen in these figures that as the heat flux approacnes zero, the
directional effect vanishes. This was tc be expected since the thermal strain
resulting from the macroscopic constriction aspproaches zero as the heat flow
rate approaches zero, and also the small radial beat loss from the specimen
surfaces was virtually eliminated. The heat loss from the specimen surfaces
was due to thermal radiation. The sink temperature was fixed at approximately

SOOF; the chamber temperature was approximately TSOF; and the source tempersature
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varied with the rate of neat flow from approximately 100°F to 400°F, Since the
specimen surfaces were pclished to reduce the radiation heat loss, the thermal
strain due to the macroscopic constriction caused the dominant directional effect.
However, it is believed that the influence of the thermal strain due to the
radiation heat losses can also be seen. For example, the change in the dimension-
less resistance R* = (AL m/bL} with the rate of heat flow Q; i.e., dR¥/dQ, is
either positive of negative depending on the direction of heat flow;‘however~9
d%R*/dQ® is always positive. The fact that d®R#/dQ2 is always positive is
proﬁably due to the radiation heat losses. Figures 2.4 and 2.5 alsc show that
for the case when heat flowed from stainless steel to aluminum, dR*/dQ approached
zero for large values of Q. Perhaps if Q were sufficiently large,‘the thermal
strain due to heat losses would dominate, and dR*/dQ would be positive.

The agreement between the theory of [1] and’the dimensionless resistances
of Figures 2.4, 2.5, and 2.6 is good if the heat flux is near zero.

Therefore,

the present theory can also be applied to dissimilar metals, provided that the

effects of thermal strain are small.

Another series of tests were made, identical to those previously described
except that the aluminum specimen was replaced by a magnesium specimen. These
results are presented in Figures 2.7, 2.8, and 2.9. The general ftrends and the
signs of dR*/dQ and d®R¥/dQ® are the same as those experienced before the magnesium
was substitﬁted for theraluminum. The agreement between the theoretically
predicted resistances and the experimental values for low rates of heat flow was
not as good as previously experienced. This was probably due to the creep which
took place in the magnesium specimen; thus; the conformity of the surfaces
improved and the predicted resistances were too large.

From Figures 2.4 through 2.9, it can be seen that for both interfaces at the

higher rates of heat flow a variation in the contact resistance of approximately
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500% occurred with the reversal of the direction of heat flow. On the other
hand, the directional effect was negligible for low rates of heat flow.

Plots of rate of heat flow versus resistance were employed since these plots
are believed to be more meaningful than the temperature versus resistance or
conductance plots employed in the literature. However, it must be remembered
that the mean interface temperature varied considerably in these tests. This
caused large variations in the thermal conductivity, the coefficient of linear
expansion, the modulus of elasticity, and other properties. The effects of
property variations with temperature in many lnstances have been removed by
employing dimensionless coordinates.

It can now be seen that some of the discrepancies between experimental data
and theory reported in [1] may have been partially due to the influence of thermal
strain, especially for the very flat surfaces. Previously, discrepancies were
usually attributed to the neglect of microscopic effects. Microscopic effects
are still believed to be of importance in some instances.

The directional trend which was found in this investigation for the stainless
steel-aluminum interface is opposite tc that found by Barzelay, et ai. L3], and
Rogers [4}. This is believed to be s conseguence of the dominance of thermal
strain due to the thermal eanvironment in their experimental results in contrast
to that resulting from the macroscopic constriction which dominated the present
results. Their results are difficult to explain completely without mecre infor-
mation on their test procedure and apparatus. Powell’s [7] failure %o detect a
directional effect was probably due to a combination of the gsometry and the
small rate of heat flow which was employed; thus, thermal strain was not of
importance.

A considerable amount of work was spent on the study of the effect of radial
gradients; however, the results were inconclusive. A brief discussion of this

study follows.
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The specimens in the thermal contact resistance apparatus employed are
unguarded (see [1] for a complete description of the apparatus). Thus, small
radial gradients occur in the specimens as a consequence of radiation heat exchange
with the surroundings. The radial gradients are small, since: (i) there is no
insulation nor an alignment device in contact with the specimens which would
otherwise provide a heat shunt; (ii) the specimens are highly polished and therefore
have low emissivity surfaces; and (iii) the vacuum environment reduces the
convective heat exchange to a negligible amcunt. These sources of radial gradients
were often present in the test apparatus employed by other investigators who
reported a directionél effect.

A guard was constructed for the test apparatus in order to vary the radial
temperature gradient. The guard consisted of a two-inch diameter copper tube which
was electrically heated by nichrome wire windings. It was concentrically located
around the lower specimen and guarded only the lower specimen. It was approxi-
mately isothermal; i.e., no attempt was made to match the gradient present in
the specimen. Ideally, the BT/Br is approximately zero away from the disturbances
of the interfaces. The addition of the guard made it possible to obtain a small
radial heat flow in either direction.

It was thought that the smalil gradients which one could obtain in this manner
would be sufficient to establish clearly the importance of thermal strain resulting
from the thermal environment. However, several difficulties were encountered. The
basic problems were:

(1) The addition of the guard caused error in the heat loss calibration

curves. Also, some heat exchange occurred between the guard and
the source, which in some cases were in light physical contact.

and (ii) Curvature in the gradient due to heat exchange with the environ-
ment caused errors in the determination of the extrapolated surface

temperatures and hence in the calculated contact resistance.
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A new experimental apparatus, which should alleviate the above difficulties,
is under construction; therefore, no attempt was made to improve the accuracy of
these results, Modifications incorporated in the new facility combined with a
data reduction program designed in the light of these extensions should circum-
vent the present problems. Further study of the influence of the thermal

environment bés thus been postponed until the new facility is completed.




Appendix A Tabulated Experimental Results

A.l Units of Tabulated Quantities

. o
p, (psi); AT (°F); Q (BIU/br);
h (—-—Eﬂz——), R¥ = ,ﬁ—l—' (dimensionless);
hr Tt - L
p.\/b
Y = E—a-) —L—) (dimensionless)
4
mi\ &t
A.2 Results of Test Series 201
Flat Deviati *
Surface atness Deviation
Material Roughness (initial) (final)
Upper Specimen: Stainless Steel Zuin. 1k o
(303)
**
Lower Specimen: Aluminum (2024) 3uin. 1.5 3

Flatness deviation is given in fringes. One fringe is 11.6 microinches.
After the completion of the test series with this specimen, it had a

"hole" at the center portion of its surface which was approximately
6 1 inches deep.

Total Equivalent Flatness Deviation (value employed in the calculation
of ¥): 180 uinches,



Series 201.1 ObJect: To determine the variation of the interface conduct=-

ance with contact pressure for a contact between dissimilar
materials. The total temperature drop was approximately

constant throughout the test series.

Test No..  Pa h AT Q ¥ x 10% R*
1 29.2 66.3 110.2 39.8 53 6,i9
2 67.7 148 62.2 50 122 2.73
3 157 %28 2.1 57.5 282 1.22
L 311 633 18.1 62.5 560 6%
5 519 1238 10.1 67.9 934 032
6 760 1730 7.1 67.2 1369 .23
7 311 T 15.4 62.h4 560 .54
8 67.7 160 58.8 51.4 122 2.52
-9 29.2 29.4 185 29.6 57 14.00
- 10 67.7 57.6 129 40,6 131 7.28
-1l 157 12k 17 51.9 305 343
- 12 311 220 L8 574 604 1.95
- 13 519 355 31.3 60.5 1008 1.22
- 14 760 543 21.2 62.6 1478 .80
- 15 987 736 15.8  63.3 1919 59
- 16 519 356 30.9 60.0 1008 1.21
- 17 157 128 The7  52.1 305 3.3h4
- 18 29,2 3.5 181.9 30.3 57 13.49

*
Sign denotes the direction of heat flow. Positive sign indicates
" heat is flowing from the upper specimen to the lower specimen.




Series 201.2 through 201.4 ObJject:

38

To determine the influence of the

rate of heat flow on the contact resistance for an aluminum-

stainless steel interface.

Test No.

h AT Q R*
28 258 4.2 58.1 1,55
29 252 30.5 41.9 1.57
30 227 22,4 27.7 1.72
31 194 12.9 13.7 1.99

- 3 138 18.1 13.7 2,84

- 33 115 k2.9 26.9 3652

- 3k 92 72,0 36,1 k.50

- 35 81 103.7 k5.9 5.19

- 36 81 104.2 L6,1 5.20

- 37 131 4.0 52.7 3.27

- 38 154 Ly 5 3Te3 2.69

- 39 185 19.h4 19.5 2.15

- Lo 206 9.3 10.5 1.90

- L 201 9.6 10.5 1.95

- b2 205 4.9 5okt 1.89
43 238 L1 563 1.61
L 261 Tol 10.0 1.48
s 289 12.1 19.0 1.34
L6 362 19.8 39.0
L7 416 27.8 63.0

1.09
o

Series 201.2
86.9
0.016

Py

4

e

Series 201.3
r 157
0.028

it

a

4

n




59

Test No. h AT Q R¥
- 59 4,8  1hg 36,5 9.29
- 60 55.7 96 29.1  T7.33
- 61 79.8 37.4 16.3 4,98
- 62 88.3 19.3 9.3 4,43 Series 201.h4
- 63 96.4 10.3 5.4 4,01 P, = Lk 6
- 64 9%.9 10.6 5.4 4,12 Z £ .,0079
65 109.7 8.7 5.2 3.50
66 108.4 8.8 5.2 3,54
67 116.9 12.8 8.1 3.30
68 120.7 22,0 14,5 3,22
69 119.3 22.3 14,5 3025
70 135.9 42,0 31.1  2.90
71 139.0 4.k 3l.hb 2,84
72 137.7 69.0 51.7 2.93

A.3 Results of Test Serieg 202

*
Flatnegs Deviaticn

Surface :

Material Roughness (initial) (final)
Upper Specimen: Stainless Steel 3pin. 1k 1k

(303)
Lower Specimen: Magnesium (AZ31B) b yin. 75 (see note **)
*

Flatness deviation is given in fringes. Ope fringe is 11.6 microinches.

*%

Tne surface contour of the magnesium specimen was considerably altered
from creep during the test series. The creep increased the surface
conformity and consequently decreased the contact resistance.

Total Equivalent Flatness Deviation: 250 pin.
(This value is the initial value.
The values of Z given are based
on this flatness deviation.)
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Series 202.1 through 202.3 Object: To determine the influence of the rate

of heat flow on the contact resistance for a magnesium-stainiess

steel interface.

Test No. h AT Q R¥
- 18 104 58.6 33.1 5.68
- 19 115 43,3 27.2 3.26
- 20 130 29.8 21.1 2.84 Series 202.1
- 21 139 17.7 13.4 2,61 p, = Ly, 6
- 22 129 19.0 13.4 2.82 ¥ 2 ,0083
- 23 141 9.0 7.0 2.53
24 161 502 4.6 2.19
a5 158 5.3 L6 2.23
26 186 11.6 11.8 1.91
27 183 11.8 11.8 1.94
28 2ks 2k.5 32.7 1.48
29 285 35.1 Sh.5  1.30
31 558 19.0 57.6 .66A\
32 Lol 14,8 3h,1 .85
33 281 7.6 11.6 1.26
3l U7 4,1 5.6  1.43 $» Series 202.2
35 243 L.3 5.7 1.45 P, = 86.9
- 36 228 5.3 6.5 1.56 ¥ % 0,016
- 37 217 5.6 6.6 1.65
- 38 220 10.8 12.9 1.65
- 39 204 20.3 22.5 1.82
- 4o 190 29.1 30.0 1.98
Y 188 7.5 38.k 2.01+J



Test No. h AT Q R¥*
Lp 98k 11.5 61.5 .57
L3 718 9.1 35.8 50
Ll Lk 5.0 12,1 + 79
b5 L5k 4.9 12,1 .18
L6 394 2.8 5.9 .90
b7 391 2.8 5.9 .90
L8 375 2.9 5.9 <9k

- k9 3l 3.7 6.9  1.04
- 50 326 3.8 6.9  1.06
- 51 353 7.9 15.2 1.03
- 52 343 16.0 29.8 1.10
- 53 322 23,2 Lo.7 1.20
- 54 331 9.0 16.1 1.10
55 ol L7 12.2 .75
56 sl 4.9 12.2 .78
57 1045 11.0 62,4 ¢35

Series 202.3
p, = 157
% % 0,029
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